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COUNTING THE RELATIVELY 
FINITE FACTORS OF A BERNOULLI SHIFT 

BY 

DANIEL J. RUDOLPH t 

ABSTRACT 

Let T acting on (fL ~,/~) be a finite entropy Bernoulli shift. A T invariant 
factor ~ C .~ is "relatively finite" if a.e. fiber of ~ has a finite, hence constant k, 
number of points. We say two factors ~ ,~ 'C.~ "sit the same" if there is a 
measurable measure preserving map ~ with ~T~ ~= T and ~(~1)= ~'. We 
show here that up to sitting the same there are only finitely many relatively finite 
factors with k point fibers in a Bernoulli shift, and that they are classified by a 
certain algebraic structure in the symmetric group on k-points. 

In [1] Ornstein in t roduced the not ion of the shift invariant factors, A, A '  of a 

measure  preserving t ransformat ion (T, fL ~ , / z  ) "sitting the same" .  This is t rue if 

there is an au tomorph i sm q~ of T with r  ) =  A '. There  he presented the idea 

that the theory of factors of a Bernoulli  shift T, up to the equivalence of sitting 

the same should parallel t h e  i somorphism theory for measure  preserving 

transformations.  In ke6ping with this idea, one  can define what  it means  for  T to  

be A-re la t ive ly  weak mixing, A-re la t ive ly  mixing, A-re la t ive ly  K and A -  

relatively Bernoulli .  M. Rahe,  [2], in the appendix to his Ph.D.  dissertation has 

shown that the basic structure of K - a u t o m o r p h i s m s  is mirrored in factors A 

where T is A-re la t ively  K. J.-P. T h o u v e n o u t ' s  [7] theory of factors A which 

have an invariant Bernoulli  compl iment  can be read as the translation of 

Ornste in ' s  theory of Bernoulli  shifts to factors A where T is A-re la t ive ly  

Bernoulli .  What we wish to do here is to translate to the theory of factors of a 

Bernoull i  shift the structure of the simplest of t ransformations,  those on a finite 

point set. We say T has A-re la t ively  k points, if the factor  A has k point  fibers. 

If the parallel holds true, for any k, a Bernoull i  shift T should have only finitely 

many factors with k point fibers, up to sitting the same, and these should be 
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characterized by some very simple structure. This is precisely what we shall 

show. This result fails for T anything less than a Bernoulli shift. 

The basic tools for our argument are the structure theorems in [3], [4], and [5], 

but not the arguments which lead to their proof. Thus no more than a passing 

acquaintance with these arguments is assumed. With these results our argument 

becomes very easy. 

Suppose we have a factor A of a Bernoulli shift with k point fibers. We can, 

then, write 1"1 =- lal x {1 , . . . ,  k }, ~: - A x {1 , . - . ,  k }, and 

(1.1) T(to) - T,(& i) = (T(&), g~ (i)), 

where (T, gl, a, /2) is a realization as a point map of T restricted to A, and 

g,~ ; ~--+ s(k),  the symmetric group on k points. The first coordinate is the factor 

A and the second is a labeling for the k points of the fiber. A map T, defined by 

and g,~ as in (1.1) we will call a k-point extension of T. 

Suppose we have two factors A, A '  with k point fibers. We can write T, then, 

in two ways as a k-point extension, 

and 

T,(& i ) =  (T(ta), g~(i)) 

T2(tS', i) = (T'(ta'), g',~.(i)). 

In this context A and A '  sit the same iff there is a map ~p; ~---+1~' and an 

a~; ll--+ s(k ) so that 

= (1.2) 

and 
- 1  

If (1.2) is satisfied the automorphism (&, i ) -+ (~(~) ,  a~o(i)) takes T, to T2 and A 

to A ', and if an automorphism exists, ~0 is its restriction taking A ---* A ', and a~, 

is the relabeling function on the fibers. 

What we will consider from now on are k-point extensions of some T of the 

form 

(1.3) T(co, i ) =  (7'(~),  gco(i)) 

and will say two such are "factor isomorphic" if there is a r and a,~ satisfying 

(1.2). We will first characterize k-point extensions of a Bernoulli 7" up to factor 

isomorphism, and then discuss when the k-point extensions are themselves 

Bernoulli. 
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For a T defined by (1.3) we can define its "full extension" 7"; (~ x s ( k ) ~  
(~ x s(k ) by 

(1.4) j'(03, g)  -- (?(03), g,~ og), 

i.e. use the same skewing function g~ but replace {I ,-. -, k} by s(k), and act by 

left multiplication. Let H be the subgroup of s(k) which fixes {1}. Its left cosets 

in s(k) are H~, H2 , . " ,  Hk where Hi is the set of all permutations taking 1--~ i. 

Now T acts on the fibers (03, H~) by 7"(03, Hi) = (T(03), g,~ o H,) = (T(03), H~,)). 
Mapping ((03),H~) to (03, i) we see that T is a factor of 7" with (k - 1 ) !  point 

fibers. 

We can now make 7" part of a larger group action. For any ~ E s (k), write 

(1.5) j"  (03, g)  = (03, go g ). 

Now 7 ~o Tg = Tio T, and what we have is Z x s(k) action {Ts}s~z~,t~). Our first 

lemma explains the introduction of T. 

LEMMA 1. Suppose T and S are two k-point extensions 

and 

T(03, i) = (T(03), gr 

S(03', i) = (S(03), g'(i)). 

T and S are factor isomorphic iff the Z x s(k ) actions {2Fs}8~z• J and {Ss}s~zx,t~ 

are isomorphic. 

PROOF. Suppose the two z x s(k ) actions are isomorphic by a map ft. Now 

must take the algebra of s(k) invariant sets for Ts to the algebra of s(k) 
invariant sets for Ss. These are the corresponding first coordinates 1) and 1)'. Let 

be the restriction of ff to these algebras. Now ffT~-~= S. Let a ,  be the 

relabeling function on the s(k) fibers. As ff takes the s(k) action on the fiber 

over 03 to the s(k) action on the fiber over ~0 (03), a~ must be left multiplication 

by a~,(e)= ci,~. Thus 

(1.6) 

and so 

(1.7) 

,~ (03, g)  = (r cL og),  

ffTff-~ = g and g ~ )  = tit~,~ o g~ o a 2  *. 

As (1.7) and (1.2) are identical, the result follows. []  

We have now modified the characterization of k-point extensions up to factor 

isomorphism to characterizing Z x s (k)  actions up to isomorphism. 
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Already we can begin to see how theorems 1 and 3 of [5] will help us, as they 

say if T and S are both Bernoulli, then the whole Z x s(k) actions must be 

isomorphic and hence T and S are factor isomorphic. This already handles the 
case of k = 2 .  

COROLLARY 1. In a Bernoulli shift T any two/actors with two-point fibers sit 
the same. 

PROOF. Take two such, and write T in two ways, TI and T2, as a two point 

extension. Now T ~ T~ ---" T~ and T --- T2 - 7"~, and hence both T~ and 7"2 are 

Bernoulli of the same entropy. The result follows from theorems 1 and 3 of [5], 
and Lemma 1. [] 

Some examples due to P. Shields show that the situation is already more 

complicated for k = 3. Let T be the independent process (1/3, 1/3, 1/3) with 

generator {a, b, c}. Define 

~ (0, 1,2) if o 3 E a  
g~' = [(0)(1)(2) if cb E b, c 

g ~=  ~(0,1)(2) if & E a 
[(0)(1, 2) if & E b, c 

1"(0,1,2) if ~ a  
g~=~(0 ,1 ) (2 )  if t b E b  , 

I.(0)(1)(2) if ,~ ~ c 

and 

(1.8) Tj ((3, i) = (T(t3), g~(i)). 

It is easy to check that all T~, on {a, b, c} v {I, 2, 3} are mixing Markov processes, 

hence isomorphic to Bernoulli shifts. Thus all three first coordinates can be 

thought of as factors with three point fibers of this Bernoulli shift. 

It is also easy to check, though, that ?'1 is nonergodic, 7"2 is ergodic but I"~ is 

not, and T3 on {a, b, c} v S(3) is mixing Markov. Thus none are isomorphic and 
the three factors must sit differently. 

Notice that the main result of [4] tells us that, in fact, the only way ~ could be 

non-Bernoulli is by having a nonergodic power. This will be the starting point for 
our analyses of T. 

Suppose 7 ~ is the full extension of some k-point extension of a Bernoulli shift 
i .e. 

J'(#~,g)=(T(~),g~og). 
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By corollary 15 of [4], if T is not Bernoulli, then it must have a Pinsker algebra 

made of a finite number of atoms. Let SI, S, ~ ' ' '  S'~m, S, = ' ' "  S{~2j,''. S~ ..  "S~m 

be the atoms of this algebra where T(S{)= S{~+,),,o~,o. Furthermore, as T is 

Bernoulli, for a.e. o3, S~ tq (o3, s(k))= S~(o3) has a fixed number of points in it, 

independent of O3. 

For any ~ ~ s(k) 

(1.9) ~, 1...I S{ = I..J S{' 
i=l i=l  

for some j ' ,  as these are the ergodic components of ~P. Further 

(2.0) "ir~(S{) = S{io+,)mod~o,~ for all i = 1 , - . . ,  l(j) 

as 7 ~ moves both sides cyclically. 

A J~ can be found taking any S{ to any other. Hence l(j) = l, a constant, and 

card(S~(o3)) = a, independent of i,j and o3, and k ! =  tla. 
Let H{ Cs(k )  be the subgroup such that T,(S{)= S{ for h EH{,  i.e. the 

subgroup which fixes this atom of FI('F). Let ~ be any element with T~(S{) = Sr 

It follows that H~'.= gH{g-', so any two such subgroups differ by an inner 

automorphism. 

Pick H = H1,. Now notice that for h E H, S](o3)oh = S](&), i.e. S](o3) is a left 

coset of H. We would like it to be precisely H, for all O3. To achieve this we will 

relabel the s(k) coordinate as follows. Let 3,(O3)E S',(O3), a choice for coset 

representative. And now define 

(2.1) 

and 

~b(o3, g) = (O3, T-'(O3) o g), 

= ' .  

Surely {T's} ~ {Ts}, and T~, leaves ~b(Sl) invariant, for h ~ H. Now ~(SI) is 

precisely l ) x  H. For any other H{ = ~-lHg, the set left invariant is ~(S{)= 

1~1 x H~. Thus, after this relabeling, the atoms of I-I(T') can be identified as right 

cosets of a subgroup H, where the choice for H is unique up to an inner 

automorphism. Now 

J~'(&,H)= - - ' (T(to),g'-~-I) 

where 

(2.2) g ' =  7-'(O3)g~T (O3). 

But now for a.e. O3 
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(2.3) g '-j-/= Hgo 

by (20). Thus go'Hgo = go'g'-d-/, and so 

(2.4) 

Now we know that 

(2.5) 

for some go, 

go'Hgo = H. 

i"(fi x H) = f i x  Hgo 

where go is in N(H) ,  the normalizer of H in s(k). Once H is fixed, our choice for 

go is unique up to multiplication by an element of H. 

Notice 

7"':(t5, H )  = I"(T(&),  Hgo) = (T2(tS), g ~,o,Hgo) = (T2(tS), Hg~) 

and in general 

(2.6) IP" ((1 x H )  = • • Hg~, 

and for any other coset 

t" ( f i  x n g ) =  f i x  Hg~g = g~Hg. 

Now we know precisely how the atoms of H(T')  cycle under the action of T', 

they rotate under left multiplication by go. 

We now want to show that knowing H and goWN(H)characterizes the 

Z x S(k)  action. To do this, define 

(2.7) 7", = ~ ' , o  "/"/• x H. 

This is well defined as 1i" takes ~ x H to ~ x/-/go, which Tt;, takes to ~ x H. 
Also, for h E H, 

(2.8) Th = 'L ; / f i  x H. 

Now as i ' ,oTh = i"l-'hSo1",, these define a z ~ H  action (see [5] for more 

discussion), we can apply the isomorphism theory of [5] if we know i"~ to be 

Bernoulli. Let v be the order of go. It follows that T~ = ~.,v/~ x H. As 1~ x H is 

an atom of H(i"') = H(7"~), 7 " ~  x H, by Corollary 15 of [4] must be Bernoulli, 

and so 1~ is also. 

We can now state a lemma. 

LEMMA 2. If we have two k-point extensions of a Bernoulli shift, S and T, and 
through the above analyses obtain the same H and go E N (H) for each, then S and 
T are factor isomorphic. 
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PROOF. Let {Ss},~,| and {Ts} ,~ ,~H be the corresponding z |  
actions. Now S~ and T~ are both Bernoulli shifts, of the same entropy. By 

theorems 1 and 3 of [5], these two group actions are isomorphic. Hence there is a 

q~; 1 ] ~  1]' and a.~; ~ H  so that if we define 

then 

qJ(~, h)  = (~0 (~),  ot,~ ~ h), 

q,f .r  = &.  h e z 

Define ~ ( ~ , g )  = (,p(~), a~, og), ( ~ , g ) E  fi • s(k). We certainly get 

q~(~,;)~-l= ~;  for g E s(k). 

Thus we only need to check ~7"'~- '  = S- '  on 1~ x e to have q~ an isomorphism of 

the z x s(k) actions. Now 

q;i"'~-'(,~, e)  = S~o(~T,~, o ~'q,-')(,~, e)  = S~o(0T, q,-')(~,, e)  

and ~ is an isomorphism. Lemma 1 completes the result. []  

Thus if in our analyses we make the same choices for H and go E N ( H ) ,  the 

extensions are factor isomorphic. 

On the other  hand, our choice for H is unique up to inner automorphisms, so 

if our choices did not differ by an inner automorphism the factors would not sit 

the same. If they did, we could change our choices to be the same. If our  choices 

for H are the same, but those for go do not lie in the same coset of H in N(H), 
then the factors cannot sit the same, but if they do we can make our  choices the 

same. 

In line with this, let ~'i, i = 1 ,. �9 n (k)  be the equivalence classes of subgroups 

H C s (k)  where two are equivalent if they differ by an inner automorphism, and 

let re(i),  i = 1 , . . . , n ( k )  be IN(H)I/IHI,  H E X,. What we have now shown is 

the following 

COROLLARY 2. The number of k-point extensions of a Bernoulli shift, up to 
factor isomorphism, is at most Z~.] ) m ( i ). [] 

v " ~ m ( i )  if we can get an example for every H and goE N(H). It will be = ~-,-t 

Do this as follows. 

Let H={h, , . . . , h , } .  Pick any Bernoulli shift 7", with an independent 

generator P = {P~ , . . . ,  Pr}, l' -> I. Now define 
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(2.9) 

and 

(3.0) 

All we need to check 

true if T ~/l)  x H  is 

= f g ~ 1 7 6  if o3EP,, i ~ l  
g~ 

t go if t~EP, ,  i > l  

T(~, g) = (T(t~), g~ OR). 

is that the atoms of II(T) are the 1)• HR. This is 

Bernoulli, v the order of go. But T ~ / f ~ x H  on 

V ~., T' (P) v H / 1 )  x H is v-step mixing Markov. Thus for this H and go E N(H)  

we have an example. 

THEOREM 1. The number of k -point extensions of a Bernoulli shift, up to factor 
isomorphism is Y ~  ) m ( i ). [] 

We now want to count the factors of a Bernoulli shift. This will be the number 

of k-point extensions which are themselves Bernoulli. Our last result gives this. 

THEOREM 2. The number of k-point factors of a Bernoulli shift, up to sitting 
the same, is E ~ m ( i )  where i E I if] the subgroups in ~8, are transitive on 

{1, . . . ,k} .  

PROOF. For a fixed H and go E N(H),  take the example given in (2.9) and 

(3.0). If H is not transitive, then T ~ will not be ergodic, leaving invariant the sets 

of intransitivity in the second coordinate. On the other hand if H is transitive on 

1 ,- --, k, then T on P v {1 ,. �9 k} is mixing Markov, hence Bernoulli. Thus those 

k-point extensions which give Bernoulli shifts are precisely those where H is 

transitive. I--1 

This completes our argument. Notice that the three 3-point examples of P. 

Shields are all of them. It would be interesting to know something of how the 

numbers 

L ( k ) = ~ , m ( i )  and L ' ( k ) = ~ m ( i )  behave in k. 
i - I  i E l  

In [6] one gets two factors with two-point fibers in a K-automorphism which 

do not sit the same. This easily extends to uncountably many. They do not sit the 

same because they are nonisomorphic. It is possible, though, to have them not sit 

the same even when they are isomorphic. This example is part of a general 

technique for constructing examples we will develop in a later paper. These 

examples show how badly the arguments here fail outside the class of Bernoulli 

shifts. 
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